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In this paper, a new motion-based algorithm for GPS integer

ambiguity resolution is derived. The first step of this algorithm

converts the reference sightline vectors into body frame vectors.

This is accomplished by an optimal vectorized transformation of

the phase difference measurements. The result of this

transformation leads to the conversion of the integer ambiguities to

vectorized biases. This essentially converts the problem to the

familiar magnetometer-bias determination problem, for which an

optimal and efficient solution exists. Also, the formulation in this

paper is re-derived to provide a sequential estimate, so that a

suitable stopping condition can be found during the vehicle

motion. The advantages of the new algorithm include: it does not

require an a-priori estimate of the vehicle's attitude; it provides an

inherent integrity check using a covariance-type expression; and it

can sequentially estimate the ambiguities during the vehicle

motion. The only disadvantage of the new algorithm is that it

requires at least three non-coplanar baselines. The performance of

the new algorithm is tested on a dynamic hardware simulator.

INTRODUCTION

The utilization of phase difference measurements from Global Positioning System

(GPS) receivers provides a novel approach for three-axis attitude determination and/or

estimation. These measurements have been successfully used to determine the attitude of

air-based, 1 space-based, 2"3and sea-based 4 vehicles. Since phase differences are used, the

correct number of integer wavelengths between a given pair of antennas must be found.

The determination of the integer ambiguities can either be accomplished by using "static"

(motionless) or "dynamic" (motion-based) techniques. The ambiguities essentially act as

integer biases to the phase difference ineasurements. Once the integer ambiguities are

resolved, then the attitude determination problem can be solved. 5

The static method finds a solution that minimizes the error residual at a specific time

by searching through an exhaustive list of all possible integers and rejecting classes of
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solutions when the residual becomes too large. 6 Refinements can be made to the solution

by restricting the search space with knowledge of a-priori information, such as the

maximum tilt the baseline should encounter. 7 Static methods generally rely on solving a

set of Diophantine equations, s The appeal of these methods is that they provide an

"instantaneous" attitude solution, limited only by computation time, and are well suited

for the short baselines. However, the minimum residual does not guarantee a correct

solution in the presence of noiseJ In fact, it is possible that static methods can report a

wrong solution as valid, especially when some of the calibration information, such as line

bias, is incorrect. This lack of integrity can cause significant problems if the sensor

output is used to control a high bandwidth actuator, such as gas jets on a spacecraft.

Another consideration is that static methods sometime require that the antenna array must

be within a defined angle (typically 30 degrees) of a reference attitude, which is often true

for ground-based applications, but is less likely for space-based applications. Also,

structural flexibility in the baselines may lead to erroneous solutions. All of the

aforementioned limitations imply that static methods, while attractive because of their

fast solutions, are not totally acceptable for general purpose applications.

The other teehrtique for resolving integer ambiguities involves collecting data for a

given period of time and performing a batch solution, in which the integer terms remain

constant over the collection period. This technique relies on the fact that a certain amount

of motion has occurred during the data collection, either fi'om vehicle body rotation or

GPS line of sight motion. The main disadvantage of this technique, compared to static

approaches, is that it takes time for the motion to occur, which may be on the order of

several minutes. Another consideration is that a potentially significant amount of

memory is required for the storage of the batch data collection. But, motion-based

techniques also have significant advantages over static methods. Most importantly,

motion-based techniques are inherently high integrity methods because there are

numerous checks that can be implemented into the solution before it is accepted. These

include using statistical checks applied to error residuals, matrix condition number

checks, and using the closeness of the computed floating-point "integers" to actual

integers as a check. The probability of an erroneous solution being reported as valid can

be made as small as desired by appropriately setting the thresholds on these integrity

checks. For these reasons, motion-based techniques have been more widely used for on-

board applications.

Traditional motion-based techniques of integer ambiguity resolution rely on the fact

that either GPS line of sight motion or vehicle motion dominates the changes in

differential carrier phase measurements. Cohen 9 developed an algorithm, known as

"quasi-static" integer resolution, that can be used when the GPS line of sight motion and

the vehicle rotation both account approximately evenly for the differential carrier phase

measurement changes. This algorithm can be adapted to almost any vehicle motion, slow

or fast, simply by varying the sample rate and the data collection time. The quasi-static

method solves a collection of differential phase measurements for a single attitude

estimate and then considers perturbations to the initial estimate at each measurement

epoch to produce a time varying batch solution to the data. Although this is a widely used

algorithm, there are certain disadvantages. First, an a-priori attitude estimate must be
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given. Second,the algorithm is an iterative batch estimator that may produce erroneous

estimates, depending on the accuracy of the a-priori attitude estimate. Finally, if a large

number of samples in the data collection are required to observe the motion, large-order

matrix inversions may be required. Another method (Ref. 10) performs a minimization

on three Euler-angle attitude parameters independent of each other, followed by

determining the integers. This approach has been shown to provide better convergence

than Cohen's method and works well for non-coplanar baselines; however, singular

conditions can exist at various attitude rotations and a significant amount of vehicle

motion may be necessary for a solution.

In this paper, a new motion-based algorithm is derived. The main advantages of the

new algorithm over the prior methods include: (i) it resolves the integer ambiguities

without any a-priori attitude knowledge, (ii) it requires less computational effort, since

large matrix inverses are not needed, and (iii) it is non-iterative. The only disadvantage

of the new algorithm is that it requires at least three non-coplanar baselines. The

algorithm is first shown as a batch solution, and then shown as a sequential solution. A

covariance expression is also derived which can be used to bound the integer solution so

that a sufficient integrity check for convergence can be developed. This is extremely

useful in the sequential formulation, since the solution can be found as the motion occurs,

rather than taking a batch solution at a specific data collection interval. For these reasons,

the new algorithm provides an attractive method for real-time ambiguity resolution.

The organization of this paper proceeds as follows. First, the concept of the GPS

phase difference measurement is introduced. Then, a brief review of Cohen's quasi-static

method is shown, and limitations and computational aspects of this algorithm are

discussed. Next, the new motion-based algorithm is derived. The conversion of the GPS

sightline vector into the body flame is first reviewed. Then, the batch solution used to

resolve the integer ambiguities is derived, followed by the sequential solution. Finally,

the new algorithm is validated by using an actual GPS receiver with a hybrid dynamic

simulator to simulate the vehicle motions of a low-altitude Earth-orbiting spacecrat_.

GPS SENSOR MODEL

In this section, a brief background of the GPS phase difference measurement is

shown. The main measurement used for attitude determination is the phase difference of

the GPS signal received from two antennas separated by a baseline. The wavefront angle

and wavelength are used to develop a phase difference, as shown in Figure 1. The phase

difference measurement is obtained by

blCOStg= A(A¢-n ) (1)

where bl is the baseline length (in cm), _ is the angle between the baseline and the line of

sight to the GPS spacecraft, n is the number of integer wavelengths between two

receivers, A¢ is the phase difference (in cycles), and 2 is the wavelength (in cm) of the

GPS signal. The two GPS frequency carriers are L1 at 1575.42 MHz and L2 at 1227.6

MHz. As of this writing, non-military applications generally use the L1 frequency. The

phase difference can be expressed by

A¢ = bTAs +n (2)
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where s • R 3 is the normalized line of sight vector to the GPS spacecraR in a reference

flame, _b• R 3 is the baseline vector (in wavelengths), which is the relative position vector

from one receiver to another, and A ¢ R3×3 is the attitude matrix, which is an orthogonal

matrix with determinant 1 (i.e., ATA = 13x3). The measurement model is given by

+ (3)

where A_U denotes the phase difference measurement for the i thbaseline andj _ sightline,

and w# represents a zero-mean Gaussian measurement error with standard deviation f_ij

which is 0.5 cm/_ = 0.026 wavelengths for typical phase noise. 9

To GPS
A

A

j i
i i :

Figure 1 GPS Wavelength and Wavefront Angle

QUASI-STATIC APPROACH

Cohen's quasi-static method 9 is a motion-based technique that begins by taking

measurements for k = I to L ("measurement epochs") to which a single attitude solution

will be determined. At each epoch it is assumed that M baselines exist and N

sightlines. The measurement model is linearized by assuming a small perturbation about

a nominal attitude A0 and an assumed set of integer phases (n0)/j, so that

A = A0(/3x 3 +[.._x]) (4)

where /3×3 isa 3× 3 identitymatrix, 60 is assumed to be a small angle rotation,and

[_80×]isa crossproduct matrix with

332



0 -a 3 a 2 ]
[a×]-= a3 0 -al

-a 2 a 1 0

(5)

Substituting Equation (4) into Equation (3) for all available measurements yields

-_=[A_-A_'0]=-sTAoT[bl×]: '][_1
s_Aor[b_M x] (6)

where 1 is a quasi-identity matrix with possible zeros along the diagonal where states

have been removed at various measurement epochs, and

  .111I 1A_- : , &- i , (A00)_=b_rAo__j+(.0)U (7)

Equation (6) is a set of ]_qV equations for (3 + MN) states. Allowing perturbations at all

epochs leads to

JL- iJLs_(L)J o n(L)7(L)

This compact representation has LMN rows and (3L + MN) states. In principle, the

integers and the attitude of the vehicle of the vehicle at each measurement epoch may be

found by applying an iterative linearized least-squares approach using Equation (8) and

updating the nominal attitude using Equation (4).

The quasi-static method has been successfully implemented to resolve the integer

ambiguities on an actual system (Ref. 1), and works extremely well when a fairly accurate

a-priori attitude is known, and significant vehicle motion is present. However, this

approach has a number of disadvantages. First, if the a-priori attitude estimate is poorly

known, then the solution may never converge (even if the integers are known exactly).

Second, not only does this algorithm require a good a-priori guess, but requires fairly
accurate attitude estimates at all measurement times. The reason for this is that as time

increases, the perturbations to the a-priori attitude guess may become too large for the

solution to converge. This may be overcome by augmenting the state equations to

include a constant, but unknown, body rate that is also estimated. Finally, a (3L + MN)

matrix inverse is required, which may cause computational problems. Many of these

333



problems may be overcome by developing an algorithm that is independent of any
attitude information.

NEW ALGORITHM

In this section a new algorithm to resolve the integer ambiguities is shown. The main

advantage of this algorithm is that it is attitude independent. First, a conversion of the

sightline vectors into the body frame is shown. This converts the problem into the

familiar magnetometer-bias problem. Then, a batch solution for this problem is shown,

followed by a sequential approach.

The new algorithm begins by determining the sightline vector in the body flame,

denoted by s_-= As. This is accomplished by minimizing the following loss function ll

M

= for j = 1,2,..., N (9)

If at least three non-coplanar baselines exist, the minimization of Equation (9) is
straightforward and leads to

._j =_j-c_.j (lOa)

-B-I 1...__A"_rbi
s'j j ar /j 'J-

cj = Bf 1 b_i
"5 ""

(lOb)

(10c)

M

Bj ,bT ( od)
i=l r_ij - -

The computed sightline in the body frame is related to the sightline vector in the reference

frame by

_j=As_.j+c_j+gj (ll)

where cj is a constant bias since the baselines are assumed constant, and _ej is a zero-

mean Gaussian process with covariance Rj = Bj I . Again, the inverse in Equation (10)

exists only if three non-eoplanar baseline vectors exist.

The next step is to use an attitude-independent method to fred the phase-bias vector

cj. Doing this for each sightline gives us all the sightlines in both the body frame and the

reference flame. The explicit integer phases are not needed for this solution, but it is

important to cheek that they are close to integer values, as mentioned in the Introduction.

In the general case, the explicit integer phases can be found from the attitude solution.
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The three-baseline case (M = 3) is simpler, for in this case Equation (10c) can be inverted

to give

nij = bT c_j (12)

With more than three baselines, however, Equation (10c) does not have a unique solution

for c j, so the M integer phases for sightline _sj cannot be found fi'om cj alone. We will

consider the three-baseline case, which is the most common in practice. If more baselines

are available, we are always free to select a three-baseline subset. Then, after the integer

phases have been determined, a refined attitude estimate can be computed using all

baselines (i.e., three baselines are sufficient to determine an attitude, which may then be

used to resolve the integers corresponding to the other baselines).

To eliminate the dependence on the attitude, the square of Equation (11) is computed,

so that

M==I[A-_jl]2=I_J--_J--_,ll2 (13)

--I_f=-=_c_+M=-=(_-c_)_,_+I_1_
Next, the following effective measurement and noise are defined

z_ N_lt=_f_l= (14a)
v_--=(_-c_)_-M= (14b)

Then, the effective measurement can be written as

1_I_Zj = 2_j.cj- j + vj (15)

Alonso and Shuster (Ref. 12) showed that vj is approximately Gaussian for small £j with

mean given by

and variance given by

/.tj-E{vjI=-trace{Rj}

- -c,)R,(_,-___)4-E{ v2}-#2 4(_j T ^

(16)

(17)

The negative-log-likelihood function for the bias is given by

_(c_)=__ z_(__=e_(_c_÷H___(_+logo'2(k)+log2n " (18)
The symbol k denotes the variable at time tk. The maximum-likelihood estimate for _cj,

denoted by c_j, minimizes the negative-log-likelihood function, and satisfies
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=0  19>
_C.

The minimization of Equation (18) is not straightforward since the likelihood function

is quartic in cj. A number of algorithms have been proposed for estimating the bias (see

Ref. 12 for a survey). The simplest solution is obtained by scoring, which involves a

Newton-Raphson iterative approach. Another approach avoids the minimization of a

quartic loss function by using a "centered" estimate. A statistically correct centered

estimate is also derived in Ref. 12. Furthermore, Alonso and Shuster show a complete
solution of the statistically correct centered estimate that determines the exact maximum

likelihood estimate c_. This involves using the statistically correct centered estimate as

an initial estimate, and iterating on a correction term using a Gauss-Newton method.

Although this extension to the statistically correct centered estimate can provide some

improvements, this part is not deemed necessary for the GPS problem since the estimated

quantity for n/j is rounded to the nearest integer.

Batch Solution

In this section the statistically correct centered estimate algorithm (see Ref. 12 for

details) and its application to the integer ambiguity problem are shown. First, the

following weighted averages are defined

L L

.
k=l

L L

where

- _ -2 1
_J- O'2 _=1 °'l(k) VJ(k)' -_J--CYJ Z"r2"f(k3 /'tJ(k)

k=l _J v'/

L

Next, the following variables are defined

= zj(k)- j,

(20)

(21)

_j(k)mvj(k)-Vj, _tj(k)- /tj(k)-_tj (22)

The statistically correct centered estimate now minimizes the following loss function

1 L 1

J(c_j)='_Z_2(k)[_j(k)-2_j(k)'cj-ktj(k)]2 (23)
k=l

which is now a quadratic function in _c_j. The minimization leads directly to

336



L

k=l _J _ j

where the estimate error covariance is given by

ambiguity for the i th baseline and j'_ sightline can beThe

following to the nearest integer

.ij =_brc 

The integer error covariance, denoted by Qa_/,can be shown to be given by

=bT#bi

(24)

(25)

resolved by rounding the

(26)

(27)

Equation (27) can be used to develop an integrity check for the algorithm. For example, a

suitable criterion can be developed from a three-sigma bound using 33f_-.

Sequential Formulation

This section expands upon the batch solution so that a sequential estimate of the

integers can be found. The main advantage of a sequential formulation is that the

convergence (integrity) check can be made on-the-fly (i.e., in real-time). The covariance

in Equation (25) to be expanded to the L + 1 time point, so that

L

Pfl(L+ 1)= E o.21(k)4"sJ (k)'gT(k)'_ 4(1+ 1)4s--J (L+ 1)_T(L + 1)
k=l

=/_I(L). I ,, 1 4.f.(L+I)._T(L+I )
o'_(L + 1) -2 -2

(28)

From the matrix inversion lemma, 13 the following sequential formation for the covariance

is developed

Pj(k + 1)= Kj(k)Pj(k) (29)

where

Kj(k)=l-Pj(k)'gj(k+l)['gT(k+l)Pj(k)'gj(k+l)+lo'2(k+l)l_[(k+l ) (30)

In order to derive sequential formulas for the quantities in Equation (20), first consider

the following identity

_ 1 1 _ 1 _
k=l °'_k)ZJ(k)=_ zj(L)= k=l 4 -(k) zj(L) (31)
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Expandingout this expressionusingL - 1 points in the summation yields

and so

EII fj(L-l)+ zj(L)= 'V_j(L 1) of(L)" j(L)V@j(L- I) _ 4

_'/(L) = °'_J(L)z)(L-1)+'_2(L-1)zj(L)

cr_j(L) + _2 (L- l)

(32)

(33)

Therefore, the following sequential expressions for the quantities in Equation (20) are

given

1

_j(k+ 1) = cr_j(k+l)+._2(k)[cr2"(k+l)_j(k)+_'2(k)zj(k+l)]j (34a)

1

"gj(k+l)=o_j(k+a)+_j(k)[_(k+l)'gj(k)+_j(k)_j(k+l)] (34b)

1 o.2.

where

1 1 1
(35)

_j2.(k+l) crj(k) cr2(k+l)

directly to

The estimated bias in Equation (24) can also be found in a similar manner, so that

c)(k + 1)= Kj(k)c_(k)-} o.2( _ + 1) [_'j(k + 1)- _j(k + 1)]2 Pj(k + 1) s_.-j(k + 1) (36)

Since the baselines are constant, Equations (26) and (27) can be used

determine the sequential integer value and error covariance, given by

nij(k) = bT c__(k) (37a)

Qij(k) = bTiPj(k)bi (37b)

The complete solution proceeds as follows. First, use Equations (10b) and (10d) to

convert the sightline vectors into the body frame. Then, perform an initial batch solution

using Equations (20)-(25) in order to initialize the sequential routine (an accurate initial

estimate is not required as will be seen in the results section). Then, perform a sequential

estimate for the integers using Equations (29), (30), and (34)-(37). Finally, continue until

the covarianee in Equation (37b) is below a pre-speeified value.

There are many advantages of the new algorithm. First, the algorithm is fully

autonomous (i.e., it requires no a-priori information such as an a-priori attitude guess).

Second, the largest matrix inverse is of a 3 x 3 matrix, which makes the algorithm
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computationally efficient and stable. Third, it is non-iterative, which makes it suitable for

a sequential formulation. This has a significant advantage since the convergence can be

checked during the actual motion in the vehicle. Finally, the integers for other sightlines

can be easily resolved by calling the same subroutine. Therefore, the algorithm can easily

be implemented using all available sightlines, and attitude determination can begin once

the integers corresponding to two sightlines have been resolved. For these reasons, the

new algorithm provides an attractive approach to resolve the integers.

HARDWARE SIMULATION AND RESULTS

A hardware simulation of a typical spacecraft attitude determination application was

undertaken to demonstrate the performance of the new algorithm. For this simulation, a

Northern Telecom 40 channel, 4 RF output STR 2760 unit was used to generate the GPS

signals that would be received at a user specified location and velocity. The signals are

then provided directly (i.e., they are not actually radiated) to a GPS receiver that has been

equipped with software tracking algorithms that allow it operate in space (see Figure 2).

/nputs
GPS Constellation

Vehicle Dynamics

Simulation Parameters_[

Simulated

Time

Position

Velocity

Attitude

.d

Outputs
Receiver

Performance

Simulated

Computer

_r

Visible Satellites

Doppler Shift

Pseudorange
Carrier Phase

TCXO
RF Synthesizer

RF Outputs

(4)

I

_r w _r _r

Display I GPS
Computer -" Receiver

Measured

Time

Position

Velocity
Attitude

Figure 2 Hardware Simulation Block Diagram

The receiver that was used was a Trimble TANS Vector; which is a 6 channel, 4 RF

input multiplexing receiver that performs 3-axis attitude determination using GPS carrier

phase and line of sight measurements. This receiver software was modified at Stanford

University and NASA-Goddard to allow it to operate in space. This receiver model has

been flown and operated successfully on several spacecraft, including: REX-U, OAST-

Flyer, GANE, Orbcomm, Microlab, and others.
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The simulated motion profile was for an actual spacecraft, the Small Satellite
Technology Initiative (SSTI) Lewis satellite, which carried an experiment to assess the

performance of GPS attitude determination on-orbit. Although the spacecraft was lost
due to a malfunction not related to the GPS experiment shortly after launch, this motion

profile is nonetheless very representative of the types of attitude determination

applications. The orbit parameters and pointing profile used for the simulation are given
in Table 1.

Table I SSTI Lewis Orbit parameters

Semimajor axis (a) 6901.137 km

Inclination (i) 97.45 deg

Right Ascension of Ascending Node (RAAN) -157.1 deg

Eccentricity (e) 0.0001

Pointing profile Earth pointed

Launch date August 22, 1997

The simulated SSTI Lewis spacecraft has four GPS antennas that form three

baselines. The antenna separation distances are 0.61 m, 1.12 m, and 1.07 m, respectively.

One antenna (in baseline 3) is located 0.23 m out of plane (below) the other three

antennas. On the spacecraft, the antennas are mounted on pedestals with ground planes to

minimize signal reflections and multipath. For the simulation, the signal was provided to

the GPS receiver without multipath noise. The baseline vectors in wavelengths are given
by

[0.001
b-1= / 1.64/' -b2 = 6.28 b-3 = / 3.93 (38)

k-O.12j k-o.17j L-1.23_

Line biases are first determined before the new algorithm is tested to resolve the integer

ambiguities. The GPS raw measurements are processed at 1 Hz over a forty minute

simulation. During the simulated run, a minimum of three visible GPS are given at all

times. Also, there are a number of eight minute spans when two of the same (in time)

sightlines are available for the ambiguity resolution algorithm. Again, in practice, all
available sightlines should be processed simultaneously, but with three baseline vectors

only two simultaneously available sightlines are required to determine the attitude of the
vehicle.

As mentioned previously, the first step in the algorithm involves using the baselines
and phase difference measurements to convert the sighfline vector into the body-frame,

using Equations (10b) and (10d). Then, a small batch run is used to initialize the

sequential routine. For this case, only 5 seconds of data was required to perform the

initialization. Again, only two sightlines are required to determine the attitude.

Sequential error results (i.e., actual integer minus the computed values without rounding)

for the first sightline are shown in Figure 3. The integer error can be found be rounding
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the values in Figure 3 to the nearest integer. Clear[y, for this case, the integer ambiguities

have been resolved even before the sequential process begins (i.e., within 5 seconds). A

plot of the 3,_=_j values is shown in Figure 4 for the first sightline (a suitable integrity

check is given when 3,_j is below 0.5). Clearly, the integrity check shows that the

ambiguities are resolved within 5 minutes. Note, that this is a sufficiency test (i.e., the

integers may be resolved well before 5 minutes, which is seen in this case). A plot of the

errors for the second sig_tline is shown in Figure 5. For this case, all of the ambiguities

have been resolved within 30 seconds (the error value corresponding to the second

baseline goes below -0.5 before 30 seconds). A plot of integrity check for the second

sightline is shown in Figure 6. The integrity check shows that the ambiguities are

resolved within 7 minutes. This hardware simulation of a spacecra_ clearly demonstrates

that the new algorithm presented in this paper provides an accurate method to resolve the

integer ambiguities with even slight vehicle motion.
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Figure 3 Errors for First Sightline
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CONCLUSIONS

In this paper, a new algorithm was developed for GPS integer ambiguity resolution.

The new algorithm has several advantages over previously existing algorithms. First, the

algorithm is attitude independent so that no a-priori attitude estimate (or assumed vehicle

motion) is required. Second, the algorithm is sequential so that it may be implemented in

real-time. Also, a suitable integrity check can be used to determine when the determined

values have converged to the correct values. Finally, the algorithm is computationally

efficient since only a 3 x 3 matrix inverse is required, and the same subroutine can be

used on different sightlines. The only disadvantage of the new algorithm is that it

requires at least three non-coplanar baselines. The algorithm was tested using a GPS

hardware simulator to simulate the motions of a typical low-altitude Earth-orbiting

spacecrai_. Results indicated that the new algorithm provides a viable and attractive

means to effectively resolve the integer ambiguities.
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